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ABSTRACT 

To promote energy-saving behavior, disaggregating elec-

tricity usage is critical for increasing consumer awareness 

of energy usage behavior. This study proposes HeatProbe, a 

thermal-based power meter system that uses thermal imag-

ing to track disaggregated appliance usage. We have de-

signed, prototyped, and tested the HeatProbe system. Re-

sults show that HeatProbe successfully senses individual 

appliance operating durations with an average error of 

125.03 seconds, achieving 80.2% appliance power account-

ing accuracy in different appliance usage scenarios. 

Author Keywords 

Power Consumption Monitoring, Per-appliance Power Dis-

aggregation. 

ACM Classification Keywords 

H5.m. Information interfaces and presentation (e.g., HCI): 

Miscellaneous. 

General Terms 

Design, Experimentation. 

INTRODUCTION 

Energy conservation has recently become a significant 

concern [1], and has long been an important goal of Ubi-

Comp research on promoting energy consumption aware-

ness [2, 3, 4]. Since utility bills aggregate electricity usage, 

it is difficult to determine disaggregated energy consump-

tion. If individuals can be made aware of their major energy 

consuming behaviors (e.g., the type and operating duration 

of the consuming appliance), they can explore ways to 

make positive changes in their energy usage. As empha-

sized by Stern [17], this information awareness on ap-

pliance usage behavior and incentives for changing envi-

ronmentally significant consumer behavior can have syner-

gistic effects to conserve energy. 

This study proposes the HeatProbe system to track the 

energy consumed by individual appliances. The proposed 

system disaggregates total power usage from a master pow-

er meter into individual appliance power usage by tracking 

the heat patterns generated by running appliances. This ap-

proach is based on indirect sensing. Rather than directly 

sensing the power line connecting to each appliance, Heat-

Probe uses a thermal camera and thermal imaging algo-

rithms to recognize heat patterns from appliance usage. 

Figure 1 shows heatmaps of appliances captured at two 

different time points. The upper heatmap (Fig. 1(a)) shows 

the appliance surface near room temperature in the power-

off state. The lower heatmap (Fig. 1(b)) shows that a user 

has entered the space and turned on various appliances 

whose surface temperature exceeds room temperature. 

Since appliances produce heat as a byproduct of their op-

eration, HeatProbe determines changes in an appliance’s 

power state by tracking its surface temperature. A rising 

surface temperature implies that the appliance has been 

turned on, while a falling surface temperature implies the 

appliance has been turned off. 

Several recent power metering systems, such as Electri-
Sense [2], Viridiscope [3], and contactless EMF sensing 

method [4], allow the tracking of per-appliance electricity 

consumption by analyzing the electro-magnetic signals of 

each appliance in the home. However, these systems require 

per-home calibrationor a training process to determine the 

parameters (e.g., calibrated parameters for estimating power 

consumption or electro-magnetic fingerprints) of different 

appliances. Recognizing the difficulty of these calibra-
tion/training efforts, this study proposes the HeatProbe sys-

tem. This system aims to automate the tracking of disaggre-

gated appliance energy usage footprints by indirectly sens-

ing the runtime temperature-change trends on appliance 

surfaces. Since all electric appliances generate heat during 

operation, individual appliance usage can be inferred from 

the detected appliance on/off events.  

The main contribution of this study is its novel thermal 

approach to disaggregating whole electric energy usage into 
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appliance-level energy consumption. This study presents 

thermal imagining algorithms to recognize heat patterns 

from appliance surfaces and human body surfaces, thus 

accounting for individual appliance electricity usage. Expe-

rimental results showed that the proposed thermal approach 

sensed individual appliance operating durations with an 

average error of 125.03 seconds and achieved 80% ap-

pliance power accounting accuracy in different appliance 

usage scenarios.  

RELATED WORK 

Existing studies on monitoring electric energy con-
sumption  

Commercial electricity monitoring solutions, such as 

Cent-a-Meter [5] and TED [6], provide aggregated whole-
home electricity usage with a single-point inline power me-

ter. These solutions produce accurate aggregated power 

monitoring results. Jiang et al. [7] designed a wireless sen-

sor network to monitor AC power usage with customized 

ACme nodes. All nodes in this system route the power read-

ings back to a server over the IP network. All collected 

power data is then processed on the server and can be vi-

sualized by users, who view their individual real-time ener-

gy consumption using a Web interface. Considering the 

installation difficulty for end-users, Patel et al. [16] de-

signed an easily deployable power meter that consists of a 

sensor unit with wireless radio interface attached to the 

electrical breaker panel and a calibration device plugged in 

to each electrical outlet. This system computes real-time 

power consumption by sensing the anisotropic magnetore-

sistive (AMR) effect caused by changing magnetic fields 

and collecting information from the plug-in devices on out-

lets. 

Many researchers have investigated various ways to 

monitor appliance-level power consumption. By analyzing 

power readings from in-line power meters, Non-Intrusive 

Load Monitoring (NILM) [8, 9] identifies the sudden 

changes in the voltage or current readings caused by the 

state changes of appliances. Based on these detected ap-

pliance on/off events, NILM disaggregates whole-home 

power consumption into appliance-level components. Rowe 

et al. [4] exploited an electromagnetic field (EMF) sensor to 

assist the training phase of NILM. However, a machine 

learning procedure is required to learn models for specific 

appliances. ViridiScope [3] proposed an indirect-sensing 

approach to estimate current power consumption based on 

the magnitude of the sensed magnetic field near an ap-

pliance. Intermediate appliance state changes can also be 
detected using light and acoustic sensors. ElectriSense [2] 

enables the tracking of different appliance usages by ana-

lyzing the continuously high frequency electromagnetic 

interference (EMI) signals generated when an appliance is 

running. By extracting the features embedded in the emitted 

EMI signals, ElectriSense can classify the usage of different 

appliances using a machine learning toolkit. In contrast, 

HeatProbe captures the runtime heatmaps using a thermal 

camera to segment appliance heat and detect significant 

heat increases/decreases on the appliance surfaces. Using 

this data, the system infers the appliance operating duration 

and power usage without performing calibration/training 

steps.  

Prior Work Using Thermal Sensing 

Previous researchers have explored various possibilities on 

applying thermal imaging in the HCI research. StressCam 

[10] presents a method to detect people’s stress level using 

thermal cameras. Based on the correlation between people’s 

stress level and their forehead temperature, StressCam 

measure their physiological stress based on the temperature 

of their foreheads. Yun et al. [11] extended this thermal 

imaging method to observe players’ physiological stress 

level while playing games. Based on the detected stress 

level, the system can infer the difficulty level in a game 

faced by individual players and then adjust the difficulty of 

the game dynamically based on players’ skill levels. Heat-

Wave [12] explores thermal sensing to enhance user surface 

interaction. Using a thermal camera to track residential heat 

traces left on an interactive surface, their system detects 

various finger gestures such as hovering, touching, target 

selection, etc.  

THEORY OF OPERATION 

The HeatProbe system infers per-user power consumption 

using one in-line power meter and one thermal camera. 

According to the electric circuit theory [15], the rate of 

electrical energy dissipation (P) due to resistance is propor-

tional to the current (I) and resistance (R) and based on the 

following equation: 

             P = I
2
R                                       (1) 

Figure 1. Two frames captured (a) before and (b) after all 

appliances are turned on. These five appliances are a 

lamp, a monitor, and oven, a PC and a printer.  

 

Fig. 1. Two thermal image frames captured (a) before 

and (b) after all appliances are turned on. 

 

(a) Before turning on appliances 

(b) After turning on all appliances 



 

Dissipated energy due to the internal resistance of an ap-

pliance is converted into the form of thermal energy, i.e., 

heat, which causes the temperature on the appliance surface 

to rise. 

HeatProbe uses a thermal camera to capture this tempera-

ture change on appliance surface. Figure 1 shows the tem-

perature difference between two heatmaps captured at two 

time points. The upper heatmap (Fig. 1(a)) shows the ap-

pliance surface near room temperature in the power-off 

state. The lower heatmap (Fig. 1(b)) shows that a user has 

entered the space and turned on appliances, including a 

desk lamp, an LCD monitor, a printer, a PC, and an oven. 

The surface temperature of these appliances rises, exceed-

ing room temperature. HeatProbe uses the change in the 

appliance surface temperature to infer the appliance on/off 

state. This heat-producing phenomenon is universal to al-

most all electric-powered appliances. 

Assumptions and Limitations 

The current HeatProbe system works based on the fol-

lowing assumptions. (1) The system tracks electricity usage 

from appliances that are plugged into the building circuit 

such that the inline master power meter can sense their elec-

tricity usage. For example, the system cannot track elec-

tricity consumed by mobile devices that run on their own 

batteries. (2) The system cannot track an appliance whose 

surface is not within view of the thermal camera, e.g., ap-
pliances that are hidden underneath a desk. (3) The system 

recognizes only appliance on/off binary state. However, 

some appliances, such as refrigerators, have multiple power 

states. Since an intermediate power state change often pro-

duces a small temperature change, the current thermal cam-

era cannot detect heat-changing events caused by the inter-

mediate appliance state change. Thus, the current system 

implementation assumes that the appliance consumes con-

stant amount of power. However, most shared appliances 

have limited operating states and tend to be used for a li-

mited amount of time. Thus, the amount of under- (or over-) 

estimated power consumption should be relatively insigni-

ficant over a longer monitoring period. 

SYSTEM DESIGN 

Figure 3 presents the HeatProbe system design. HeatProbe 

implements five inference modules to derive appliance 

power consumption from the raw heatmaps and power read-

ings:  (1) heatmap segmentation, (2) power event detection, 

(3) appliance usage detection, (4) appliance operating dura-

tion resolution, and (5) appliance power accounting. This 

section first provides a brief description of how these five 

inference modules operate in the HeatProbe system.  

(Step 1). Heatmap segmentation processes each heatmap 

and partitions it into multiple segments, each of which cor-

responds to either a heated (running) appliance or a human 

body. For example, after segmenting the heatmap in Fig. 

1(b), HeatProbe locates six heat segments corresponding to 

five appliances and one human body. HeatProbe then com-

putes the surface temperature of each appliance segment. 

By continuously computing the surface temperature of each 

appliance segment over time, the system determines tem-

perature changes on the appliance surface. Rising (falling) 

temperature indicates a heat event with an on (off) ap-

pliance power state change. HeatProbe also identifies and 

tracks the human bodies by continuously analyzing heat-

maps.  

(Step 2). Power event detection analyzes aggregated 

power readings obtained from the master power meter and 

identifies power events correlated to changes in an ap-

pliance’s on/off power state. For example, Fig. 2(a) shows 

the aggregated power readings including two pairs of pow-

 

 

 

Figure 3. HeatProbe system design. 
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Figure 2. Resulting average surface temperature of two 

exemplar appliances (a toaster and a monitor) when the 

appliance is turned on/off. These two cases show that 

surface temperature increases (decreases) when the ap-

pliance turned on (off). 

 

(b) Average surface temperature of a toaster 

(a) Power readings 



 

er-on and -off events. They correspond to (e1) power-on of 

a toaster at the 16
th

 minute, (e2) power-off of the toaster at 

the 17
th

 minute, (e3) power-on of an LCD monitor at the 

20
th

 minute, and (e4) power-off of the LCD monitor at the 

56
th

 minute. 

(Step 3). Appliance usage detection monitors any signifi-

cant temperature increases/decreases for each appliance 

segment. Because electric energy dissipates on the internal 
resistance as a form of thermal heat, the generated heat will 

cause a noticeable temperature increase on the surface of an 

appliance. For example, Fig. 2 shows significant tempera-

ture increases occurring at the 16
th

 and 21
th

 minutes. After 

the toaster (monitor) turns off, the surface temperature 

drops back to the room temperature, as indicated at the 22
th
 

(56
th

) minute in Fig. 2 (b) and (c). This allows the system to 

infer an appliance on/off state change by detecting signifi-

cant temperature increases/decreases in an appliance seg-

ment.  

(Step 4). Appliance operating duration resolution cap-

tures the relationship between an appliance’s power-on 

event (the cause) and its surface temperature increase event 

(the effect). Similarly, this step captures the relationship 

between an appliance’s power-off event (the cause) and the 

subsequently temperature decrease event (the effect). For 

example, Fig. 2 shows the matching of four pairs of power-

on (-off) and heat-rising (-falling) events. The first pair oc-

curs around the 16
th
 minute, when the user switches on the 

toaster. This action produces a power-on event at the 16
th

 

minute, and the heat-rising event from the image segment 

of the toaster from the 16
th

 to the 19
th

 minute. Three other 

event pairs occur at the 21
th

, 22
th

, and 56
th

 minutes. The 

system determines the starting/ending times of each ap-

pliance’s usage by matching and linking these events.  

(Step 5). Appliance power accounting estimates the aver-

age power consumption of each appliance based on the 

power changing amounts of power-on (off) events. For ex-

ample, Fig. 2 (a) shows pairs of power-on and power-off 

events for a toaster. These events correspond to (e1) power-

on of a toaster at the 16
th
 minute (a 600 Watt power in-

crease), (e2) power-off of the toaster at the 17
th

 minute (a 

600 Watt power decrease). The appliance power consump-

tion can be approximated by the amount of energy con-

sumed in an average power (600 Watt) over the entire ap-

pliance usage session.  

The following sections describe each module in details as 

follows. 

In-line Power Meter and Thermal Camera 

The system uses two sensors: an in-line power meter and a 

long-wavelength infrared (LWIR) thermal camera. Existing 

power meters installed by the utility providers can provide 

data on aggregated power consumption.  

The infrared/thermal camera measures the quantity of 

infrared (far-infrared, F-IR, or long-wavelength infrared, 

LW-IR) radiation emitted by any object. Based on Planck’s 

law, the electromagnetic radiation from a room-temperature 

object falls mainly in the IR spectrum, with the radiation 

intensity directly proportional to the fourth power of the 

object’s absolute temperature. By measuring the radiation 

intensity emitted in the IR spectrum, the thermal camera 

can passively generate a heatmap of an object in the view 

range without any illumination sources. This approach is 

unlike the reflected infrared operating in the near-infrared 

(N-IR) spectrum.  

Heatmap Segmentation 

Figure 4 shows a sequential block diagram of the heatmap 

segmentation module, which includes the following steps: 

(1) human body location tracking, and (2) appliance heat 

pixel labeling steps. These two steps are described as fol-

lows. 

Human body location tracking: Given raw heatmaps, the 

human body location tracking component finds moving 

heating sources (i.e., humans) by identifying pixels with 

sudden temperature changes. Because the temperature val-

ues of human bodies are significantly higher than room 

temperature, the movement of a human body should cause 

abrupt temperature increases/decreases on pixels in or near 

human bodies between two time-adjacent frames. By identi-

fying pixels with abrupt temperature changes, it is possible 

to segment out a body area by drawing a bounding contour 

for a clustered region of pixels with sudden temperature 

changes. The same procedure can be repeated for all time-

adjacent heatmaps to find a corresponding human mask, 

which labels all pixels in bounding contours as human-type 

pixels. Subsequent modules can use this human mask to 

retrieve the location of a user, which is given by the coordi-

nates of all pixels within the selected human body area. 

Appliance heat pixel labeling: To locate the regions of 

running appliances, the system uses the human-suppressed 

heatmaps to find heated appliance pixels with temperatures 

above the room temperature (24.3℃). First, the system dy-

namically selects a cut-off temperature in each heatmap to 

segment out appliance heat pixels. The system then analyz-

es the temperature distribution of pixels in each heatmap. 

Figure 5 shows an example temperature distribution of  a 

heatmap. Due to the thermal camera’s limited temperature 

Figure 4. Steps in the heatmap image segmentation module 
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sensing range (23℃ ~ 35℃), all temperature values are 

limited within the sensing range. All pixels with tempera-

tures higher (lower) than maximum (minimum) sensing 

temperature are set to the maximum (minimum) value. This 

results in large number of pixels at the minimum (23℃) and 

maximum (35℃) temperature. This temperature distribu-

tion also has a peak located around the room temperature 

(24.3℃). The whole distribution is fit by a Gaussian func-

tion to extract the mean (μ) and variance (σ
2
) parameters 

shown as the red dotted line in Fig. 5. The cut-off tempera-

ture is set as the mean value (around the room temperature) 

plus one standard deviation, μ+σ. After determining the cut-

off temperature for a heatmap, it is possible to label all pix-

els with temperature values greater than the cut-off temper-

ature as appliance-type pixels in a corresponding labeling 

frame, as indicated the middle row of Fig. 6. Repeating the 

same procedure for each raw heatmap identifies the corres-

ponding appliance heat pixels. The resulting appliance heat 

pixels are then used to generate appliance masks for detect-

ing the appliance usages. 

Power Usage Detection 

The raw power readings in Fig. 2(a) are measured by an in-

line power meter that samples the power consumption of 

appliances once per second. These raw power readings can 

be smoothed using a median filter with a sliding window of 

five samples. The starting (or ending) time of a power-on 

(or -off) event can be determined by finding a significant 

change in the value of the smoothed power curve, which is 

caused by turning on (off) an electric load. A significant 

change of a power event of the i
th

 appliance usage session, 

defined as Δpi, gives the power demand of that appliance. 

For example, Fig. 2 (a) shows that the power readings in-

crease (decrease) at the 20
th

 (56
th

) minute when the LCD 

monitor is turned on (off), with an increasing (decreasing) 

amount of 25 (25) Watts. Therefore, a power event is de-

fined as power changing vectors Pi = (ti, Δpi), where ti, and 

Δpi are the starting (ending) time, and the increasing (de-

creasing) amount of the power readings of the power on 

(off) event of the i
th

 appliance usage session, respectively. 

Appliance Usage Detection 

This module involves the following four steps: (1) tempera-

ture-based spatial smoothing, (2) appliance heat mask gen-

eration, (3) heat-rising event detection, and (4) heat-falling 

event detection.  

Temperature-based spatial smoothing: The temperature-

based spatial smoothing step first performs noise reduction 

on the observed temperature. Each frame is smoothed by 

finding the average temperature of each 3x3 neighborhood 

of pixels. The same procedure is repeated for all pixels in a 

heatmap, generating a smoothed heatmap. These smoothed 

heatmaps are processed in subsequent steps to detect heat 

events.  

Appliance heat mask generation: This step obtains the 

appliance heat masks corresponding to different appliance 

usage sessions, which indicate the pixel locations of run-

ning appliances. During appliance operating, the number of 

heat pixels (i.e., whose temperature is above  the room tem-

perature) of an appliance might vary due to temperature 

increases (decreases) on the appliance surface or appliance 

form changes caused by usage behaviors (e.g., open-

ing/closing the LCD monitor of a laptop). To locate an ap-

pliance’s pixels, the system aggregates all heat pixels dur-

ing an appliance operating session to form a union area, 

called an appliance heat area. This appliance heat area can 

effectively monitor the temperature-changing trends during 

the appliance operating. This area appears in the rightmost 

frame of the middle row of Fig. 6. An appliance mask for a 

specific time can be generated by unmasking pixels in ap-

pliance heat areas for all appliances running at that time. 

Repeating the same procedure for each time instance pro-

duces a series of time-ordered appliance masks, as shown in 

the lowest row of Fig. 6. The subsequent steps of this mod-

ule use this appliance mask series to retrieve the coordi-

nates of all pixels within each appliance.  

Heat-rising event detection: This step analyzes the 

smoothed heatmaps to detect the heat-rising events of all 

appliances. Turning on an appliance should persistently 

dissipate electric energy, and thus cause a noticeable tem-

perature increase on the appliance surface. The heat-rising 

process shows a slow but persistent temperature increase. 

Thus, the proposed system takes the average temperatures 

of all pixels for each appliance (i.e., all pixels in each ap-

pliance heat area) every second, producing the temperature 

Heat pixel labeling 

 

Mask generation 

 

Figure 6. Appliance mask generation steps. The top row 

includes raw heatmaps captured in five adjacent times. The 

middle and lower rows represent the corresponding labe-

ling frames and masks. The right-most frame contains the 

resulting appliance heat areas for a lamp and a monitor.  
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Figure 5. Temperature distribution of all pixels in a frame. 

The peak (red dotted line) is fit by the Gaussian distribu-

tion, with a mean value of μ and a standard deviation of σ. 

 



 

trend depicted in Fig. 7. To detect the rising trends, the raw 

average temperature is smoothed using a low-pass filter (the 

red line in Fig. 7). The smoothed signal is then analyzed 

with a sliding window (Δton) of 60 samples or 1 min of 

sensed average temperature. 

The occurrence of a heat-rising event corresponds to a 

condition in which the temperature difference between the 

beginning and ending time in the sliding window exceeds a 

threshold ΔT = 0.2℃, indicating a slow but substantial 

change. This is determined by the average heat-rising rate 

observed from the empirical results of the appliances in our 

experiment. After the starting time of an event, the tempera-

ture changing rate (ri) of an event of the i
th

 appliance usage 

session is equal to the maximum slope in the sliding win-

dow. This value represents the heat generation characteris-

tic of the appliance when turned on.  

Heat-falling event detection: The proposed system detects 

the occurrence of a heat-falling event by monitoring the 

major temperature-changing trend of all pixels. Due to the 

thermal conductivity of the materials surrounding the ap-

pliances (e.g., the air, the surface of the desk, etc.), it takes 

some time to disperse the generated heat left inside an ap-

pliance. This makes the surface temperature fall at a slow 

rate after an appliance is turned off. The heat-falling rate is 

not uniform across the appliance surface. To detect the 

temperature changing trend of each pixel, the system calcu-

lates the temperature difference (Tdiff) of a pixel between the 

current temperature and the previous temperature recorded 

60 seconds earlier (a time interval long enough to reflect the 

falling trend). The system can then classify each pixel into 

one of three temperature-changing categories: a tempera-

ture-rising pixel (Tdiff > T), a temperature-falling pixel (Tdiff 

< -T), and a temperature-fixed pixel (-T ≦ Tdiff ≦ T). The 

temperature threshold, T, is determined by the temperature 

resolution of the thermal camera (T=0.3℃ in the current 

implementation). A heat-falling event occurs when there are 

more temperature-falling pixels than temperature-rising 

pixels in an appliance heat area. A trend indicator (TD) cal-

culates the difference between the percentage of tempera-

ture-rising pixels and the percentage of temperature-falling 

pixels in an appliance area. Fig. 8 shows when an appliance 

is turned off, TD drops below zero because the number of 

temperature-falling pixels exceeds the number of tempera-

ture-rising pixels. After the surface temperature of the ap-

pliance returns to the room temperature, TD also goes near 

zero. The system calculates TD for each appliance heat area 

in every second interval (Fig. 8). A low-pass filter smoothes 

the TD samples (the red line in Fig. 8) with a sliding win-

dow (Δtoff) of 90 TD samples over one and a half minutes. 

An appliance-off event corresponds to  a drop in TD below 

zero in the sliding window exceeding a threshold (ΔTD) of 

10%. This means the percentage of temperature-falling pix-

els exceeds the percentage of temperature-rising pixels by 

10%.  

Appliance Operating Duration Resolution 

This module resolves the appliance-on (-off) time and oper-

ating duration of each appliance usage session. Each ap-

pliance-on (-off) state change generates a pair of power and 

heat events that are correlated with each other in event oc-

currence time. Therefore, this module infers the appliance-

on (-off) times by finding the optimal matched pairs of 

power and heat events based on time proximity, which can 

be formulated as an event assignment problem [13]. Each 

operating duration can then be obtained by calculating the 

time difference between on and off time. This module in-

volves the following three steps: (1) appliance-on time, (2) 

appliance-off time, and (3) operating duration resolution 

steps.  

Appliance-on time resolution: The appliance-on time is 

determined by power-on and heat-rising events matching 

algorithm. Appliances requiring a pre-heating step in prepa-

ration for further action (e.g., printing papers) tend to con-

sume a larger amount of power (i.e., a larger Δp value). 

This pre-heating step also causes the appliance surface tem-

perature to increase rapidly (i.e., at a higher heat-rising rate 

ri) when entering the full operating mode, and thus instantly 

triggers a significant temperature increase. Based on this 

observation, the initial matching stage selects power events 

with a large Δp value and thermal events with a high heat-

rising rate. To identify appliances with high power con-

sumption, the system computes the average power-

changing amount from  all power-on events and then identi-

fy high-power events whose Δp is above the average value. 

Similarly, the system designates heat-rising events with 

temperature changing rates above the average rate . After 

obtaining these high-power (-heat) events, the system per-

forms  matching to join heat and power events. Figure 9 

Figure 8. The trend indicator for an appliance heat area. 

The blue line is the original data curve, and the red line 

is the smoothed curve after applying a low-passed filter. 

 

Figure 7. The average temperature for an appliance heat 

area. The blue line is the original data curve, and the red 

line is the smoothed curve after applying a low-passed 

filter. 

 



 

shows an example in which high-power and high-heat 

events are represented as two types of vertices: power and 

heat vertices. A heat vertex represents an i
th 

heat event 

(  
     

     
   ) occurring on   

   with a heat-rising rate   
    

A power-type vertex representing a j
th

 power event 

(  
     

     
 

  
 ) occurring on   

   with the power-changing 

amount    
  . An edge connecting  a heat vertex to a power 

vertex has a matching likelihood weight (or cost)  set as the 

time difference (    
      

   ) between the i
th 

heat and j
th

 

power events. By adding these edges between heat and 

power vertices creates  a weighted bipartite graph.  

In the next step,  the system applies an event assignment 

algorithm [13] to find the optimal event assignment in 

which the sum of cost from edges is minimum. After per-

forming the high-power and -heat event matching, the same 

algorithm is performed to join all remaining power-on and 

heat-rising events. The resulting matched on-event pair of 

the k
th

 appliance usage session is defined as   
     

      
   , 

where   
  and    

   are the corresponding appliance-on 

time and power changing amount of this on-event pair, re-

spectively. Because the power-on time and heat-rising time 

given by events of an event pair may differ, the appliance-

on time   
   is set as the power-on time of the power event 

included by the matched event pair.  

Appliance-off time resolution: After the on-event matching 

step, the appliance-off time is determined by matching 

power-off and heat-falling events using the weighted bipar-

tite graph and event assignment algorithm described in the 

previous paragraph. However, the edge cost used in the off-

event matching is calculated differently, as explained below. 

Given an on-event pair of the k
th

 appliance usage session 

matched by the previous step, the edge cost between a m
th

 

heat-falling event,   
   

   
   

   
   

 , and a n
th

 power-off 

event,   
   

   
   

   
 

   
 , is calculated as follows:  
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where time_costmn measures the time proximity between the 

m
th

 heat-falling event and the n
th

 power-off even, and pow-

er_costn reflects the correlation of the power-changing 

amount between the current n
th

 power-off and the value 

inferred from previous matched power-on events. Thus, the 

time_costmn is proportional to the time difference between 

the power and heat events (   
   

   
   

 ). The power_costmn 

is proportional to the difference of the power-changing 

amount between power -on and -off events (    
   

    
  |). 

To simultaneously consider these two sets of parameters 

measured in different units, both time_cost and power_cost 

are rescaled to a unified cost range of 0~100. The weights, 

wt and wp, are set as 0.8 and 0.2, respectively, to rate the 

time-based cost (i.e., time_costmn) at a higher rank than the 

other cost term power_costn. After the off-event matching 

step, the resulting matched off-event pair of the k
th 

ap-

pliance usage session is defined as   
   

   
   

 Δ   
   

 , where  

  
   

, Δ   
   

 are the corresponding appliance-off time and 

power changing amount of this off-event pair, respectively. 

Similarly, the inferred appliance-off time (denoted as   
   

) 

of the matched off-event pair of the k
th

 appliance usage ses-

sion is given by the time of the matched power-off event. 

Operating duration resolution: The appliance operating 

duration (Tk) of the k
th

 appliance usage session is calculated 

from the time difference between on and off time instances 

(i.e.,   
   

   
  ). For those appliance usage session with 

only matched on- (off-) event pair, the system uses an off 

(on) time recovery scheme to further improve resolution 

accuracy. Most appliances are turned on by a switch on the 

appliance body. Although some appliances are remotely-

controlled, users often interact with or touch these ap-

pliances during usage (e.g., take printed papers from the 

printer). Therefore, the system uses both human-appliance 

interaction hints and event times of un-matched thermal 

events to infer missing on (off) times. The system searches 

for the most likely human triggering action closest to a ref-

erence time indicated by the event time of a time-adjacent 

un-matched thermal event. The missing appliance-on (-off) 

time    
   (  

   
) is given by the time instance of the trigger-

ing action that a human body area touches (or is in closest 

location proximity to) the appliance heat area. 

Appliance Power Accounting 

The appliance power accounting module estimates the av-

erage power consumption for each appliance by the match-

ing results provided in the previous step. Based on the pre-

vious matched power-on (-off) event pair of the k
th

 ap-

pliance usage session, the average power (  ) can be ap-

proximated by the average of power changing amount given 

by the on- and off-events (   
   and    

   
) using the fol-

lowing formula.  

    
   

   
    

  

 
                          (5) 

Take the monitor usage session in Fig. 2(a) as an 

ple:    
   and     

    are 20 Watts in the 21
th

 minute and 20 

Watts in the 56
th

 minute, respectively. The appliance-level 

 H1 H2 H3 

P1 3 12 22 

P2 4 5 15 

P3 17 8 2 

 

Figure 9. An example power-heat matching graph. In (a), 

three power events (P1, P2, and P3) are connected with 

three heat events (H1, H2, and H3) with edges with costs 

listed in (b).  
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power consumption in the k
th

 appliance usage session can 

then be approximated by the electric energy consumed in an 

average rate of Pk over the entire session (with session dura-

tion equal to Tk). 

IMPLEMENTATION DETAILS 

The current HeatProbe implementation consists of (1) a 

NEC TH7102MX thermal camera and (2) a wireless inline 

power meter (Fig. 10). The camera was mounted to the ceil-

ing to monitor a space, e.g., cubicle spaces, public rooms, 

or kitchen spaces. The thermal imaging signals captured by 

the camera were sent through an 1394 port to a backend 

data processing server. In the current prototype, the server 

records and processes sensor data. Our thermal imaging 

processing software  is developed based on the OpenCV 

libraries [14].  

As for power monitoring, the inline power meter trans-

mits power readings to the server through the Zigbee radio 

every second. A corresponding wireless Zigbee-based data 

receiving module attached to the server receives power 

readings. The server records power readings for subsequent 

processing by the power usage detection module. 

EVALUATION 

To measure accuracy of the HeatProbe system, this study 

conducts experiments involving three appliance usage sce-

narios with multiple users.  

Appliance Usage Scenarios 

Table 1 lists three appliance usage scenarios. These scena-

rios differ on the operating appliances, the number of par-

ticipants, and the number of appliance usage events. For 

each scenario, we scripted a sequence of appliance usage 

actions for the participants to perform. The following 

sections describe these scripted action sequences in detail. 

We recruited a total of six participants for these 

experiments. All participants were graduate students in our 

department. For each set of scenarios, there were several 

experimental rounds with different pairs of participants: 

there were 5, 2, and 2 rounds for scenario #1, #2, and #3, 

respectively. 82 different appliance usage sessions (with 

durations ranging from one to 60 minutes, with an average 

length of about 22 minutes) were collected in these usage 

scenarios. 

Appliance usage scenario #1 (office cubicles)  

Two participants worked in two adjacent cubicle spaces, 

and a thermal camera mounted on the ceiling monitored 

their electricity usage. Appliances included two PCs, two 

LCD monitors, and two desk lamps. Additionally, one hea-

ter, one toaster, and one printer were placed between the 

two cubicles. The appliance usage script for participant #1 

was (1) turn on/off a PC, (2) turn on/off a LCD monitor, (3) 

turn on/off a desk lamp, and (4) print documents from the 

shared printer. The appliance usage script for participant #2 

was (1) turn on/off a PC, (2) turn on/off a LCD monitor, (3) 

a desk lamp, (4) a heater, and (5) toast bread using a toaster.  

Appliance usage scenario #2 (a meeting room)  

Two participants discussed their project in a meeting room 

where a thermal camera mounted on the ceiling monitored 

their electricity usage. Appliances included two notebook 

PCs, two desk lamps, one TV-size screen, one paper 

shredder, and one bug zapper. The appliance usage script 

for participant #1 was (1) turn on/off his/her notebook PC, 

(2) turning on/off a desk lamp, and (3) the TV-size screen. 

The appliance usage script for participant #2 was (1) turn 

on/off a notebook PC, (2) a desk lamp, (3) a paper shredder, 

and (4) a bug zapper. 

Appliance usage scenario #3 (a kitchen) 

Three participants operated various appliances in a kitchen 

where a thermal camera mounted on the ceiling monitored 

their electricity usage. Appliances included a water boiler, a 

toaster, an electric oven, a microwave, and one TV. The 

appliance usage script for participant #1 was (1) boil water 

using an electric water heater, (2) toast bread using a toaster, 

and (3) heat food in a microwave. The appliance usage 

script for participant #2 was (1) heat a microwave oven and 

(2) heat food in an electric oven to heat their food, and (3) 

watch some TV. The appliance usage script for participant 

#3 was (1) make toast with the toaster, and (2) heat food in 

an electric oven.  

Evaluation Metrics 

This study defines the following metrics to measure the 

accuracy of event detection, matching algorithms, and the 

appliance power accounting results.  

 Event time detection error: This measures the time 

difference between the system-detected power/heat 

event and the actual, ground-truth event.  

 Event detection accuracy and precision. This meas-

ures how accurately the HeatProbe system detects 

power and heat events.  

Environment (1) cubicle 
spaces 

(2) room 
spaces 

(3) kitchen 
spaces 

Participating 
Appliances 

2 PCs 
2 monitors  
2 desk lamps  
1 heater  
1 toaster 
1 printer 

2 Notebooks 
2 desk lamps 
1 television 
1 shredder 
1 bug zapper 

1 water heater 
1 toaster 
1 electric oven 
1 microwave  
1 television 

# of participants 
for each round 

2 people 2 people 3 people 

# of on/off ev-
ents per round 

20 14 18 

Table 1. Experimental appliance usage scenarios for three 

types of environments. 

(a) Thermal camera 

 

(b) Power meter 

 Figure 10. The prototype sensor components. The thermal 

camera (a) is mounted on the ceiling. The power meter (b) 

communicates with the data receiving module wirelessly. 



 

 Matching accuracy. This measures how accurately 

the HeatProbe system matches power events to cor-

responding heat events.  

 Appliance operating duration resolution error. This 

measures how accurately the HeatProbe system moni-

tors appliance operating duration. The resolution error 

calculates the amount of error in the HeatProbe-

detected appliance operating duration and the actual 

ground-truth operating duration.  

 Appliance power accounting error. This measures 

how accurately the HeatProbe system accounts for 

appliance energy consumption. The accounting error 

calculates the amount of error (in percentage) in the 

HeatProbe-detected appliance power consumption 

and the actual groud-truth appliance power consump-

tion. 

Results 

HeatProbe-detected events were collected and compared 

with the ground-truth events labeled by humans observing 

the heatmap video recordings.  

Event detection accuracy and precision  

Table 2 presents statistics of the HeatProbe’s accuracy per-

formance from three experimental scenarios. True (false) 

positives mean the number of correctly (incorrectly) de-

tected events by the HeatProbe system. The table also 

shows the average time difference between the HeatProbe-

detect events and the ground-truth events. 

The average accuracies for detecting power-on, power-

off, heat-rising, and heat-falling events are 94%, 100%, 

99%, and 95%. The average precisions for detecting power-

on, power-off, heat-rising, and heat-falling events are 97%, 

95%, 93%, and 94%. All average detection accuracies are 

above 90%. The average event time detection errors for 

power-on, power-off, heat-rising, and heat-falling events 

are 4.7, 3.43, 114.67, and 108.69 seconds. The reason for 

the large errors in detecting times of  heat events is an inhe-

rent delay between the time when an appliance is powered 

on/off and the time when an appliance surface exhibits a 

noticeable temperature change. For example, it takes a few 

minutes after powering on a PC to heat up its surface 

enough for the thermal camera to notice a temperature dif-

ference. The large standard deviations in the event time 

error are due to some appliances, such as a desk lamp and a 

heater, that increase their surface temperature more rapidly 

than that of other appliances. 

Appliance operating duration resolution accuracy 

Table 3 summarizes the number of ground-truth events, the 

number of correctly matched events by our matching algo-

rithm, and the average event matching accuracy. The over-

all accuracy is 0.77. The matching error is caused primarily 

by a few seriously-delayed heat-rising (-falling) and/or 

false-positive events with a large time difference from the 

ground truth starting (ending) time. Because the current 

matching algorithm maps one heat-rising (-falling) event to 

a power-on (-off) event based on time proximity, a serious-

ly-delayed heat-rising (-falling) event tends to match an 

incorrect power event (temporarily called e1). This mis-

matched result might force another heat event (which 

should be matched with e1) to pair with another incorrect 

power event, resulting in a series of mismatched pairs.  

Figure 11 shows the statistics of the appliance operating 

duration resolution error of the HeatProbe system. The x-

axis represents the amount of operating duration resolution 

error between the detected and actual operating durations, 

while the y-axis represents the cumulative distribution func-

tion of the operating duration resolution error. From the 

usage durations inferred from the previous matching results, 

80% of duration errors are less than 120 seconds, with an 

average error of 125.03 seconds.  

Overall appliance power accounting accuracy 

Table 4 presents the average appliance power accounting 

accuracy. The ground-truth (estimated) powers for each 

appliance are averaged and listed in the table. The overall 

average error between the estimated power and the ground-

truth power is 19.8%. Most errors are less than 10%. How-

Event 
Type 

P-On P-Off P-All 
H-
Rising 

H-
Falling 

H-All  

Ground-
truth 

82 82 164 82 82 164 

True 
positive 

77 82 159 81 78 159 

False 
positive 

2 4 5 6 5 11 

Average 
time diff 
(S.D.) 

4.70  
(7.67) 

3.43 
(6.79) 

4.06 
(7.25) 

114.67 
(156.59) 

108.69 
(125.97) 

112.25 
(142.37) 

Accuracy 0.94 1 0.97 0.99 0.95 0.97 

Precision 0.97 0.95 0.96 0.93 0.94 0.94 

Table 2. Experimental results for three scenarios. P-On (or H-

Rising) indicates the power-on (heat-rising) type of events. And, 

P-Off (or H-Falling) indicates power-off (heat-falling) type of 

events. P (H) -All means the overall summary of all power (heat) 

events. In the 5th row, the standard deviation of the time differ-

ence is indicated by values inside of the parentheses. 

Figure 11. Cumulative distribution of the appliance operat-

ing duration resolution error of the HeatProbe system.  

Figure 9. The prototype sensor components. The thermal 

camera (a) is mounted on the ceiling. The power meter (b) 

communicates with the data receiving module wirelessly. 

 

Event Type On event Off event All 

# of Ground-truth 
event pairs 

82 82 164 

# of correctly 
matched event pairs 

61 65 126 

Accuracy 74% 79% 77% 

Table 3. Summary of the event matching accuracy.  



 

ever, there are a few cases in Scenario #1 where the error 

rates are above 30%, e.g.,  LCD Monitors #1 and #2, and 

Lamps #1 and #2.. These large errors are due to mis-

matched on/off events. For example, the 177.05% inaccura-

cy of Lamp #2 in Scenario #1 is caused by mismatching 

Lamp #2 events to the power amount of a heater. The two 

appliances greatly differ in power consumption, resulting in 

a significant energy accounting error.  

CONCLUSION 

This study presents HeatProbe, a novel thermal-based ener-

gy meter system to disaggregate total energy consumption. 

Experiments conducted on three multi-user scenarios 

showed that the overall appliance power accounting accura-

cy reached an average of 80.2%. The system successfully 

monitored appliance usage durations with an average error 

of 125.03 seconds. Moreover, 80% of the measured usage 

durations were under 120 seconds. 

We believe that the HeatProbe system offers an alterna-

tive and promising thermal-sensing approach to tackle the 

problem of disaggregating electricity usages. In the future, 

we will improve disaggregation accuracy and explore the 

possibility of accounting per-user energy footprints by in-

corporating human identification schemes. 
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Scena-
rios 

Appliance 
True Power 
[W] 

Estimated Power 
[W] (Error) 

1 

PC #1 86.09 79.25 (7.94%) 

PC #2 79.91 74.45 (6.83%) 

LCD Monitor #1 27.86 40.08 (43.88%) 

LCD Monitor #2 26.94 39.34 (46.04%) 

Lamp #1 80.03 110.42 (37.97%) 

Lamp #2 29.61 82.04 (177.05%) 

Printer 256.23 286.42 (11.78%) 

Toaster 629.09 616.10 (2.06%) 

Heater 411.76 353.11 (14.24%) 

2 

Notebook #1 32.26 35.08 (8.77%) 

Notebook #2 29.86 29.80 (0.20%) 

Lamp #1 80.23 82.20 (2.45%) 

Lamp #2 82.44 88.11 (6.89%) 

TV 121.14 121.54 (0.33%) 

Bug zapper 33.65 30.32 (9.91%) 

Shredder 76.86 75.75 (1.45%) 

3 

Water heater 433.98 417.55 (3.79%) 

Microwave oven 733.15 741.23 (1.10%) 

Toaster 540.63 631.93 (16.89%) 

TV 121.28 121.61 (0.27%) 

Oven 547.85 457.87 (16.42%) 

Table 4. Appliance power accounting error for all scenarios. 

True (Estimated) column means the true (estimated) power. 
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